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Abstract. We consider the characteristic polynomials of random unitary matricesU drawn from
various circular ensembles. In particular, the statistics of the coefficients of these polynomials are
studied. The variances of these ‘secular coefficients’ are given explicitly for arbitrary dimension
and continued analytically to arbitrary values of the level repulsion exponentβ. The latter
secular coefficients are related to the traces of powers ofU by Newton’s well known formulae.
While the traces tend to have Gaussian distributions and to be statistically independent among
one another in the limit as the matrix dimension grows large, the secular coefficients exhibit
strong mutual correlations due to Newton’s mixing of traces to coefficients. These results might
become relevant for current efforts at combining semiclassics and random-matrix theory in
quantum treatments of classically chaotic dynamics.

1. Introduction

Circular ensembles of unitary matrices were first considered by Dyson [1] and described
in detail by Mehta [2]. They are used to describe the quantum statistics of periodically
driven systems (see [3] and references therein) and of scattering processes [4]. It is the
unitary Floquet operator in the first case and the unitaryS-matrix in the second that the
random unitary matrices in question attempt to mimic with respect to certain more or less
universal properties. Systems with global chaos in their classical limit and with time reversal
invariance either present or strongly broken exhibit the greatest degree of universality in
their statistical properties and tend to fall into one of the universality classes represented
by the circular orthogonal, symplectic, or unitary ensembles (COE, CSE, CUE). The so-
called Poissonian ensemble (CPE) of diagonal unitary matrices with independent unimodular
eigenvalues has also found applications for certain classically integrable systems. There has
been a recent interest in the analysis of intermediate ensembles of unitary matrices which
describe the crossover between different universality classes [5–7]. Direct links between
corresponding Gaussian and circular ensembles have been established lately [8, 9].

Unitarity constraints imposed on a random matrix of small sizeN cause a significantly
non-Gaussian character of the distribution of matrix elements [10–12]. Moreover, various
statistics of unitary matrices from the different circular ensembles depend strongly on the
matrix size, and for smallN differ a great deal from the asymptotic largeN properties. This
is in contrast to the Gaussian ensembles of Hermitian matrices [2] which tend to display
lesser sensitivity to the matrix dimension.
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For example, the normalized level spacing distributionP(S) suffers a cut-off atS = N ,
and is close to the Wigner-like distributions only forN upwards of roughly 10. Moreover,
Baranger and Mello [13] have shown that the distribution of transmission intensitiesP(T )

is non-Gaussian forN = 2 and 4, whereas coming close to Gaussian for largerN .
We were led to study the secular polynomials of random unitary matrices in an attempt

at constructing semiclassical quasi-energy spectra for the kicked top under conditions of
classical chaos. Periodic-orbit theory can be invoked only insofar as periodic orbits are
available. In practice, as for any system for which no simple symbolic dynamics is known,
one can hope to find all periodic orbits with periods no longer than maybenmax ≈ 10,
due to the infamous exponential proliferation. These would allow one to semiclassically
evaluate traces of powers of the Floquet operator, trFn, with n up tonmax. A Hilbert space
of dimensionN = 2nmax is then accessible since Newton’s formulae [14] (see section 2)
allow one to express the firstnmax coefficients of the secular polynomial in terms of the first
nmax traces; the so-called self-inversiveness of the secular polynomials of unitary matrices
[15] then yields the second half of the set of coefficients. The practical applicability of
periodic-orbit theory would thus seem severely limited. Inasmuch as the dimensionN of
the Hilbert space is proportional to the effective size of quantum fluctuations (formally,
N ∝ 1/h̄) one runs out of periodic orbits just when the semiclassical approximation begins
to have araison d’être.

To ease the dilemma just described, one might hope to increase the size of the Hilbert
space by throwing dice, according to random-matrix theory, for traces with exponents
nmax < n < N − nmax. To prepare for such a ‘marriage’ of semiclassical approximations
with random-matrix theory we propose to study here secular polynomials of random unitary
matrices from various ensembles. A previous first step in this direction was taken in [16],
where the means and the mean squares of the coefficients mentioned were calculated for the
CPE and the CUE. A related study was presented by Bogomolnyet al [15, 17] who gave
the distribution of the roots of random self-inverse polynomials.

Even though the bulk of the work to be presented is analytical we performed extensive
comparisons with numerical data on ensembles of unitary matrices. To generate the data
we constructed COE and CUE matrices with the algorithm given in [18] and CSE matrices
as described in [19].

2. Coefficients of secular polynomials

2.1. Theory

The secular polynomial of a unitary matrixU of sizeN is defined as

det(U − λ) =
N∑

n=0

(−λ)naN−n =
∏

i

(eiϕi − λ) (1)

where theϕi are the eigenphases ofU anda0 = 1. We are interested in the statistics of the
secular coefficientsan due to various ensembles of random matrices. We shall characterize
these ensembles by their joint densities of theN eigenphasesϕi ,

d
β

N(ϕ1, ϕ2, . . . , ϕN) = C(β, N)
∏
i<j

|eiϕi − eiϕj |β (2)

whereC(β, N) is a normalization constant whileβ, the so-called degree of level repulsion,
distinguishes the ensembles:β = 0 for the Poissonian ensemble for which the eigenphases
are independently and uniformly distributed over the interval [0, 2π); the circular orthogonal,
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unitary, and symplectic ensembles are characterized by, respectively,β = 1, β = 2, and
β = 4. Occasionally we shall allow the parameterβ to range freely among the real numbers.
All of the ensembles in consideration are homogeneous inasmuch they do not distinguish
any particular value of any eigenphase. It follows immediately that the ensemble means of
all coefficients of the secular polynomial vanish,

an =
∫ 2π

0
dϕ1 . . . dϕNaNd

β

N(ϕ1, ϕ2, . . . , ϕN) = 0. (3)

Next, we are interested in the ensemble averagesana∗
m which can be obtained from the

generating function

P
β

N = det(U − λ)(U − µ)† =
∏
k

(eiϕk − λ)(eiϕk − µ)∗ (4)

=
∫ 2π

0
dϕ1 . . . dϕNd

β

N(ϕ1, ϕ2, . . . , ϕN)
∏
k

(eiϕk − λ)(eiϕk − µ)∗.

For λ = eiϕ , µ = eiχ it follows from the periodicity of the integrand that the integral
depends on the phasesϕ, χ only through the variablex = ei(ϕ−χ). Thus our generating
function may be written as

P
β

N(x) =
∏

i

(eiϕi − eiϕ)(e−iϕi − e−iχ ) =
∏

i

f (ϕi, x) =
N∑

n=0

xn|an|2 (5)

where we have introduced the auxiliary function

f (ϕ, x) = (eiϕ − x)(e−iϕ − 1). (6)

Hence all correlationsana∗
m for m 6= n vanish. Moreover, one easily shows

|an|2 = |aN−n|2 (7)

which is in accord with the so-called self-inversiveness,aN−n = a∗
naN [14]; being a

consequence of but slightly weaker than unitarity self-inversiveness entails each root of
a polynomial to either lie on the unit circle of the complex plane or to be accompanied by
its inverse as another root.

The variances|an|2 are most easily calculated in the Poissonian caseβ = 0,

P 0
N(x) = C(0, N)

[ ∫ 2π

0
dϕf (ϕ, x)

]N

= (1 + x)N . (8)

Therefore|an|2 = (
N

n

)
for β = 0 [16].

Next, we turn to the caseβ = 2 which was already treated in [16]. Observing that
the function

∏
i f (ϕi, x) which we want to average is symmetric in theN phasesϕi and

that the densityd2
N may be written as a product of two Vandermonde determinants we have

[2, 3]

P 2
N(x) =

∫ 2π

0

dNϕ

(2π)N
det(ei(m−1)ϕm−i(n−1)ϕm)

∏
k

f (ϕk, x) (9)

with m, n = 1, 2, . . . , N labelling the rows and columns of the determinant. The integral
overϕm can now be pulled into themth row of that determinant whereupon we immediately
get

P 2
N(x) = det((1 + x)δ(m − n) − δ(m − n + 1) − xδ(m − n − 1)) =

N∑
n=0

xN (10)
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whereδ(m − n) denotes the Kronecker delta. The foregoing generating function entails the
variance|an|2 = 1 for β = 2.

A little more effort is required for the orthogonal and symplectic cases(β = 1, 4). In
the orthogonal case we again employ the symmetry of the integrand of theN -fold integral in
(5) to rewrite that integral, which goes over the hypercube 06 ϕ1, ϕ2, . . . , ϕN 6 2π , asN !
times one over the hypertriangle 2π > ϕ1 > ϕ2 > · · · > ϕN > 0. Within the hypertriangle
the product of differences takes the form∏
k<`

|eiϕk − eiϕ` | =
∏
k<`

2 sin

(
ϕk − ϕ`

2

)
= iN(N−1)/2 det(eimϕ1, . . . , eimϕN ). (11)

The second member in this chain of equated expressions is manifestly positive whereupon
the modulus operation can be dropped; the determinant in the last member of (11) has
its rows labelled by the parameterm which runs in integer steps between(N − 1)/2 and
(N + 1)/2; the label for the columns is the one on theN integration variables. We may
thus write the generating function as

P 1
N(x) = N !C(1, N)

×
∫

ϕ1>ϕ2...>ϕN

dϕ1 . . . dϕN iN(N−1)/2 det(eimϕ1, . . . , eimϕN )
∏
k

f (ϕk, x). (12)

For the symplectic case we find it expedient to extend theN -fold integral in (5) to a
(2N)-fold one,

P 4
N(x) = C(4, N)N !

∫
ϕ1>ϕ2>...>ϕ2N

dϕ1 . . . dϕ2N

1...2N∏
k<`

(
2 sin

(
ϕk − ϕ`

2

))

×
N∏

k=1

[
f (ϕ2k, x)

( −∂

∂ϕ2k−1

)
δ (ϕ2k−1 − ϕ2k − ε)

]
(13)

whereε is to be sent towards zero from above. To see the equivalence of the foregoing
expression toP 4

N as given by (5) withβ = 4 we simply integrate by parts with respect
to the phases with odd labels. Only those terms survive for which theN differentiations
have turned precisely thoseN sine functions into cosines which are assigned vanishing
arguments by the delta functions; the remaining sine functions then come in quadruples as,
symbolically,s13s14s23s24 → s4

24. We should note in passing that the delta functions in the
foregoing representation ofP 4

N reflect Kramer’s degeneracy and that in our definition of the
secular polynomial for the symplectic ensemble each of the two-fold degenerate eigenphases
appears only once.

The integral representations (12) and (13) are convenient starting points for an explicit
evaluation of the generating functionsP 1

N and P 4
N . We propose to start with the slightly

easier symplectic case.
In order to actually evaluate the 2n-fold integral in (13) we once more employ the

identity (11) as extended to 2N ordered phases; we then integrate over every second phase
to get rid of the delta functions. Upon renaming the remaining integration variables as
ϕ2k → ϕk and letting the positive infinitesimalε go to zero we arrive at

P 4
N(x) = (−1)NC(4, N)

∫ 2π

0
dNϕ det(m eimϕ1, eimϕ1, m eimϕ2, eimϕ2, . . .)

N∏
k=1

f (ϕk, x) (14)

with |m| 6 (2N − 1)/2. Note that we have returned to an integral over anN -dimensional
hypercube, exploiting the symmetry of the integrand. The difficulty to be coped with now
lies in the fact that each of theN integration variables appears in a pair of rows of the
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2N × 2N determinant. At this point it is helpful to express that determinant by a Gaussian
integral over complex Grassmann variables as

detM =
∫ ( ∏

k

dη∗
kdηk

)
exp

(
−

∑
i,j

η∗
kMklηl

)
. (15)

Accounting for the matrixM from (14) and performing the 2N integrals over theη∗ we
arrive at ∫ 2π

0
dNϕ detM =

∫ ( ∏
k

dηk

)[
− 1

2

∑
m,m′

Am,m′ηmηm′

]N

= N !
∫ ( ∏

k

dηk

)
exp

[
− 1

2

∑
m,m′

Am,m′ηmηm′

]
(16)

with the antisymmetric 2N × 2N matrix

Amm′ = (m′ − m)

∫ 2π

0
dϕ ei(m+m′)ϕf (ϕ, x)

= 2π(m′ − m)((1 + x)δ(m + m′) − δ(m − m′ + 1) − xδ(m + m′ − 1)). (17)

The labelling of the rows and columns ofA is inherited from the ordered-phases form of
the Vandermonde determinant (11): bothm andm′ run in integer steps from−(2N − 1)/2
to (2N − 1)/2. The remaining Gaussian integral in (16) is easily recognized as the Pfaffian√

detA of the antisymmetric matrixA, such that the generating function in search takes the
form

P 4
N(x) = C(4, N)N !

√
detA. (18)

The sign of the Pfaffian
√

detA must be chosen such thatP 4
N(x) is positive for positive

values ofx, according to the definition of the generating function.
In a first attempt at evaluating the Pfaffian one may rejoice in the ease in finding it for

small values ofN which latter suggest a surmise for the general variance,

|an|2 =
(

N

n

)
1 × 3 . . . (2n − 1)

(2N − 1)(2N − 3) . . . (2N − 2n + 1)
for β = 4. (19)

This conjecture will be proven in the appendix.
We finally turn to the orthogonal case, taking up the integral representation (12) for

P 1
N(x). For the sake of simplicity let us assume an even dimensionN . We start with

integrating over the anglesϕi with even indicesi, pulling the(2k)th such integral into the
(2k)th row of the determinant; while that integral at first appears as going over the interval
ϕ2k+1 < ϕ2k < ϕ2k−1 we can hurry to replace the lower limit with zero, simply by adding
the N th column to the(N − 2)th, the resulting(N − 2)th to the(N − 4)th and so forth,
and thus obtain

P 1
N(x) = C(1, N)N !

∫
ϕ1>ϕ3>...>ϕN−1

dϕ1dϕ3 . . . dϕN−1iN(N−1)/2 det

(
eimϕ1f (ϕ1, x),

×
∫ ϕ1

0
dϕ eimϕf (ϕ, x), eimϕ3f (ϕ3, x),

∫ ϕ3

0
dϕ eimϕf (ϕ, x), . . .

)
. (20)

Now the integrand is symmetric in the remainingN integration variables whereupon we
may extend the integration range to theN -dimensional hypercube of edge length 2π and
make up by dropping the factorN !, as we have previously done in (14). The analogy with
(14) in fact goes much further: once more, every integration variable appears in two rows
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of the determinant. Going through precisely the same reasoning as before we again incur a
Pfaffian form,

P 1
N(x) = C(1, N)N !

√
detB (21)

with the slightly more unpleasant antisymmetric matrix

Bmm′ = −i
∫ 2π

0
dϕdϕ′f (ϕ, x)f (ϕ′, x) ei(mϕ+m′ϕ′)sign(ϕ − ϕ′). (22)

Here, the sign function ensures the antisymmetry of the matrixB with |m| 6 (N − 1)/2.
Again, the Pfaffian suggests, by its easily evaluated form for small dimensionsN , a guess
for the variances,

|an|2 = 1 + n(N − n)

N + 1
for β = 1. (23)

We refer to the appendix for the proof of that surmise forN even or odd.
Upon inspecting the variances found above forβ = 0, 2 and conjectured forβ = 1, 4

we were led to extrapolate to arbitrary non-negativeβ as

|an|2 =
(

N

n

)
1(1 + β/2)(1 + β) . . . (1 + (n − 1)β/2)

(1 + (N − 1)β/2)(1 + (N − 2)β/2) . . . (1 + (N − n)β/2)

=
(

N

n

)
0(n + 2/β)0(N − n + 2/β)

0(2/β)0(N + 2/β)
. (24)

This expression has poles atβ = −2/(N − 1), −2/(N − 2), . . . ,−2/(N − n) and zeros
at β = −2/1, −2/2, −2/3, . . . ,−2/(n − 1) for n 6 N/2. It is thus analytic and positive
for all positive β, and it goes to zero forβ → ∞. This looks like strong evidence for
the general validity claimed before. We shall actually turn the conjecture into a theorem in
the appendix. The proof will be based on the fact that (24) is equivalent to the differential
equation

∂

∂x

(
1 + β

2

(
N − x

∂

∂x

))
P

β

N(x) =
(

N − x
∂

∂x

) (
1 + β

2
x

∂

∂x

)
P

β

N(x) (25)

for the generating functionP β

N(x).

2.2. Numerical results

We constructed random unitary matricesU of different sizes according to the algorithm
developed in [18] for the CUE and the COE and later generalized for the CSE [19]. For each
such matrix we calculated a complete set ofN secular coefficientsan by first computing the
traces of arbitrary powers,tn = tr(Un), via either matrix multiplication or diagonalization;
Newton’s formulae [14] (see next section) then led to thean.

Precise estimates of the variance of any random variable require a much larger sample
than estimates of the mean. We therefore present numerical results obtained for large
samples of relatively small random matrices (N ∼ 20), although some computations
performed forN ∼ 200 provide similar results.

Our above formulae for the variance|an|2 of the secular coefficients involve the index
n of the coefficient and the matrix sizeN . The dependence onN saturates for largeN .
Figure 1 shows the dependence onn for a fixed matrix size. Due to the property (7) of
self-inversiveness this curve is symmetric aboutn = N/2.

The data of all three ensembles coincide (up to a statistical error) with the theoretical
predictions. Note that the width of the distribution of coefficients decreases with increasing
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Figure 1. Variance of the distribution of thenth coefficient
|an|2 obtained from 40 000 matrices of sizeN = 20 typical
of COE (�), CUE (◦ ), and CSE(M). The lines represent
our analytical results.

degrees of repulsion and is smallest for the symplectic ensemble. Additional numerical
investigations confirmed the expectation that the phases of thean are distributed uniformly
in the range [0, 2π) for any canonical ensemble.

Even though the formula (24) for the variance is primarily meant to cover the four
canonical ensemblesβ = 0 (CPE), 1 (COE), 2 (CUE), and 4 (CSE), we could not resist
the temptation to test its usefulness for intermediate cases. To this end we constructed
an ensemble of unitary matrices interpolating between the Poisson and unitary ensembles
according to the method presented in [20]. This intermediate ensemble depends on one
control parameterδ, varying from 0 (CPE) to 1 (CUE). Figure 2 shows the dependence of
the variance of the first two coefficients on the matrix sizeN for δ equal to 0.0, 0.2, 0.4,
0.7, and 1.0. For each case the value of the parameterβ chosen to fit theN dependence of
|a1|2, inserted into (24), provides a fair approximation for|a2|2, and similarly for subsequent
coefficients. This astonishing fact reveals a certain validity of the general formula (24) with
non-integer values ofβ for ensembles in between the usual universality classes.

3. Traces of powers of matrices from circular ensembles

The characteristic polynomial of a matrixU is related to the traces of its powers

tn = tr(Un) =
N∑

i=1

einϕi (26)

by

det(U − λ) = (−λ)N exp

(
tr ln

(
1 − 1

λ
U

))
. (27)

Expanding both sides in powers ofλ one finds the explicit relations between thean and the
tn which were already established by Newton [14]. A compact representation is

an = 1

n!

∣∣∣∣∣∣∣∣∣
t1 1 0 0 · · · 0
t2 t1 2 0 · · · 0
t3 t2 t1 3 · · · 0
· · · · · · · · · · · · · · · · · ·
tn tn−1 tn−2 tn−3 · · · t1

∣∣∣∣∣∣∣∣∣ . (28)

We infer from (27) that there are onlyN independent tracest1, . . . , tN . Moreover, for
unitary matrices for which the eigenphasesϕi are real, the number of independent complex
parameters is again reduced by a factor of a half. The firstN/2 traces suffice to determine
all N coefficientsan (cf (7)).
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Figure 2. Variance of coefficients for crossover CPE–CUE: (a)|a1|2 and (b)|a2|2 as functions
of the matrix sizeN . Control parameterδ is equal to 0.0 (Poisson,♦), 0.2 (• ), 0.4, 0.7 (�), and
1.0 (CUE,◦ ), while the level-repulsion parameterβ fitted simultaneously forboth coefficients
equals 0.0, 0.06, 0.24, 0.69, and 2.0, respectively.

Clearly, thetn all vanish in the mean for all of the circular ensembles considered here,
due to the uniformity of the distribution of theϕi . For a more complete characterization of
the statistics of the traces we propose to calculate their marginal probability densities

P
β

N,n(t) = δ2

(
t −

N∑
i=1

einϕi

)
(29)

whereδ2(t) is a two-dimensional delta function in the complext plane; the ensemble average
is to be performed with the weight (2). It turns out to be convenient to first calculate the
Fourier transform

P̂
β

N,n(k) = exp

(
− 1

2i
∑

i

(k e−inϕi + k∗ e+inϕi )

)
. (30)

Due to the periodicity of all functions of the phasesϕi involved, the characteristic function
P̂

β

N,n(k) depends onk only through the modulus|k| while the densityP β

N,n(t) is only a
function of |t |. Henceforth we assumek = k∗ = |k| and write

P̂
β

N,n(k) = exp

(
− ik

∑
i

cos(nϕi)

)
. (31)

We immediately obtain for the Poissonian ensemble

P̂ 0
N,n(k) = J0(k)N (32)

J0(k) being a Bessel function. It follows that the densitiesP 0
N,n are the same for all values

of the exponentn, a rather intuitive result given the statistical independence of the phases
ϕi in the Poissonian case. Equally expected for such a Poissonian random walk is the
independence of the mean squared ‘displacement’ ofn, |tn|2 = N .

For the unitary ensemble,β = 2, we exploit the symmetry of the exponential to be
averaged in the phasesϕi and employ the analogue of (9) and find the characteristic function
to take the form of a Toeplitz determinant,

P̂ 2
N,n(k) = det

( ∫ 2π

0

dϕ

2π
eiϕ(`−m) e−ik cos(nϕ)

)
`, m = 1, . . . , N. (33)
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The remainingϕ integral again yields Bessel functions and can be written as

P̂ 2
N,n(k) = det

( +∞∑
s=−∞

J|s|(k)(−i)|s|δ(` − m + ns)

)
. (34)

Clearly, the number of non-zero elements of theN ×N determinant here incurred decreases
as the ordern of the tracetn in consideration grows. In particular, forn > N only the
diagonal elements are non-zero such that

P̂ 2
N,n(k) = J0(k)N for n > N. (35)

At the other extreme,n = 1, we meet with the full Toeplitz determinant

P̂ 2
N,1(k) = TN =

∣∣∣∣∣∣∣∣
J0 −iJ1 −J2 · · ·

−iJ1 J0 −iJ1 · · ·
−J2 −iJ1 J0 · · ·

...

∣∣∣∣∣∣∣∣ . (36)

Intermediate values ofn lead to the subdeterminantsTm obtained by cancelling the last
N − m rows and columns ofTN ,

P̂ 2
N,n(k) = T N−n

2 T 2n−N
1 for N > n > 1

2N

P̂ 2
N,n(k) = T N−2n

3 T 3n−N
2 for 1

2N > n > 1
3N (37)

and so forth. This can be seen as follows. Starting withN > n > 1
2N one checks that the

determinant in (34) has non-vanishing elements residing only in the diagonal,J0(k)δ(`−m),
and in two subdiagonals,−iJ1(k)δ(` − m + n). One moves the(1 + n)th row to become
the second, then the(1 + n)th column to become the second and thus isolates a 2× 2
block T2 = J0(k)2 + J1(k) in the upper left corner. One repeats this process by moving
the (2 + n)th rows and columns to become the fourth and so forth until one arrives at a
block diagonal determinant in which the 2× 2 block T2 and the 1× 1 block T1 = J0(k)

appearN − n times and 2n − N times, respectively. The procedure for1
2N > n > 1

3N is
analogous: one moves the(1+ n)th and the(2+ n)th row to become the second and third,
respectively, then does likewise to the(1 + n)th and(2 + n)th column and thus generates
the 3× 3 block T3 and so forth. Asn decreases towards unity we meet all the

P̂ 2
N,n(k) = T N−mn

m+1 T (m+1)n−N
m for N/m > n > N/(m + 1) (38)

with m = 1, . . . , N .
Simplest to deal with is, of course, the case of the smallest non-trivial dimension,N = 2,

and there we obtain

P̂ 2
2,1(k) = J 2

0 (k) + J 2
1 (k) P̂ 2

2,2(k) = J 2
0 (k). (39)

By Fourier transforming we produce the densities of the first and second trace,

P 2
2,1(t) =

√
4 − |t |2
2π2|t | P 2

2,2(t) = 1

π2|t |
√

4 − |t |2
. (40)

Now we propose to show that the distributionP 2
N,n of the nth trace behaves like a

Gaussian with respect to its moments|tn|2m for sufficiently low orders. To this end we
define the functions

J̃m(k) = (−ik)mJm(k) (41)

which have the property (Abramowitz and Stegun 9.1.30 [21])

i

k

∂

∂k
J̃m(k) = J̃m−1(k). (42)
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The Toeplitz determinantTN can then be rewritten as

TN = det(J̃m, J̃m−1, . . .) with m = 0, . . . , N − 1. (43)

From this we find with (41) and (42) forl 6 N(
1

k

∂

∂k

)l

TN |k=0 =
(−1

2

)l

. (44)

To prove the foregoing identity we proceed as follows. Applying(1/k)(∂/∂k) once to
TN we get a determinant differing fromTN only in the last column where, according to
(42), J̃m−N+1 → J̃m−N . Now settingk = 0 and invokingJ̃m(0) = 0 for positive integern
while J̃m(0) = (− 1

2i)m/(−m)! for m = 0, −1, −2, . . . we face a determinant with vanishing
elements below the diagonal and thus equalling the product of its diagonal elements; among
these only the last,̃J1(0) = − 1

2i, differs from unity whereupon (44) is proven for` = 1.
In the next step,̀ = 2, TN is changed such that only the elements in the last two columns
may get their indices shifted; again settingk = 0 we are left with a 2× 2 determinant
which yields (44) for` = 2. In the`th step we get a sum of̀× ` determinants which is
evidently independent of the dimensionN for ` 6 N . Due to that independence we need
not pursue the non-trivial task of proving (44) for arbitrary` 6 N < ∞ but rather invoke
the much more easily proven result, to be established in the next section, that forN → ∞
the determinantTN is a Gaussian ink. It follows that for finiteN the expansion ofTN in
powers ofk2 coincides with that of exp(−k2/4) up to theN th power. Equations (35)–(37)
show thatP 2

N,n(t) behaves like a Gaussian distribution with respect to all moments|tn|2m

of ordersm 6 N/n. In particular, we find for the variances of the traces

|tn|2 =
{

n for 0 < n 6 N

N for n > N .
(45)

Interestingly, these variances grow towards the Poissonian valueN asn → N from below
and then remain stuck asn grows further.

We now proceed to the orthogonal and symplectic cases. Starting as in the previous
section with integrating over alternating variables we find for the orthogonal case with even
N and the symplectic case

P̂ 1
N,n(k) ∝ (detA)1/2 for β = 1

P̂ 4
N,n(k) ∝ (detB)1/2 for β = 4 (46)

with the antisymmetric matrices

Amm′ =
∑
ss ′

J|s|(k)J|s ′|(k)
(−i)|s|(−i)|s

′|

m + ns

×δ(m + m′ + n(s + s ′)) with |m|, |m′| 6 (N − 1)/2

Bmm′ =
∑

s

J|s|(2k)(−i)|s|δ(m + m′ + ns) with |m|, |m′| 6 (2N − 1)/2. (47)

We have not proven the Gaussian property but have calculated the variances. In the
orthogonal case(β = 1) we find

|tn|2 =


2n − n

n∑
m=1

1

m + (N − 1)/2
for 0 < n 6 N

2N − n

N∑
m=1

1

m + n − (N + 1)/2
for n > N

(48)
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Figure 3. Mean squared traces|tn|2 for 104 matrices of
sizeN = 20 typical of CPE (♦), COE (�), CUE (◦ ), and
CSE (M) compared with analytical results (curves).

while the symplectic case(β = 4) yields

|tn|2 =


1
2n + 1

4n

n∑
m=1

1

N + 1
2 − m

for 0 < n 6 2N

N for n > 2N.

(49)

Needless to say, these mean squared traces could have been read off the well known
two-level correlation functions of the circular ensembles the Fourier transforms of which our
variances in essence are [2]. Indeed, by introducing a non-normalized density of eigenphases
as

ρ(ϕ) = 2π

N∑
i=1

δ(ϕ − ϕi) =
N∑

i=1

∞∑
n=−∞

e−in(ϕ−ϕi) (50)

one immediately sees that the two-point correlation function of that density reads

ρ(ϕ)ρ(ϕ′) =
∞∑

n=−∞
|tn|2 e−in(ϕ−ϕ′). (51)

Figure 3 reveals excellent agreement of the mean squared traces as computed for
samples of 4× 104 20× 20 matrices of the four ensembles considered with the analytical
predictions. Note that for the Poisson circular ensemble|tn|2 equals the matrix sizeN ,
without dependence onn. For smalln the variance of traces decreases with the repulsion
parameterβ. The data for the symplectic ensemble are obtained with 2N -dimensional
matrices, which provideN different eigenvalues each.

Figure 4 displays the similarly fine agreement of our analytical results for the densities
P 2

N,n with numerical data for sets of random matrices drawn from the circular unitary
ensemble. This demonstrates that for finiten and largeN the distributions are Gaussians.
We have performed similar numerical studies for the orthogonal and symplectic ensembles,
again finding Gaussian marginal distributions for the traces of sufficiently large matrices.
Moreover, in all cases studied, the distribution of the traces was isotropic, i.e. without any
phase dependence.

We should add a word of intuitive explanation to the statistics of the traces for
large dimensionsN . The nth trace of a unitary matrix may be thought of as a random
walk in the complex plane, with each of theN steps of unit length and theith step
in a direction given asn times the ith eigenphaseϕi . These directions are mutually
independent and uniformly distributed for the Poissonian ensemble which fact explains
the independence of the characteristic function (32) ofn and the ensuing first and second
moments,tn = 0, |tn|2 = N . In accordance with the central limit theorem the rescaled
tracestN/

√
N tend, withN → ∞, to have a Gaussian distribution of zero mean and unit
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Figure 4. Distribution of the moduli of the first five
traces|t1|, . . . , |t5| for 105 CUE matrices of sizeN = 20.
Narrower full curves correspond to Gaussian distributions
with appropriate variances|tn|2 = n.

variance. Without such rescaling, the moments|tn|2m with m � N differ from those of the
Gaussian defined by the first two moments only by corrections of relative order 1/N .

For the circular ensembles withβ > 0 the phasesϕi display repulsion of degreeβ such
that the directions of subsequent steps in the random walk mentioned are not independent.
The correlations between the phases cannot prevent near-Gaussian behaviour of the traces
tn with n � N , as is intuitive in view of the local character of the spectral correlations.
Moreover, while the phasesϕi cover the interval [0, 2π) uniformly once, their multiplesnϕi

go around that intervaln times such that forn > 1 the phasesnϕi [mod(2π)] may exhibit
accidental close neighbourhoods of originally distantϕi .

4. Joint density of traces for large CUE matrices

We shall employ here a powerful theorem about determinants of Toeplitz matrices, due
originally to Szeg̈o and Kac and extended by Hartwig and Fisher [22], to find the marginal
and joint distributions of the tracestn of CUE matrices in the limit of large dimensionN . As
our starting point we recall the identity (9) for the CUE average of a symmetric function of
all N phases. Assuming, moreover, that symmetric function to have the form of a product
we can pull the integral over themth phaseϕm into themth row of the determinant in (9)
and thus express the average as a Toeplitz determinant,

N∏
m=1

f (ϕm) = det(fm, fm−1, . . . , f−N+1) = T ({f }) m = 0, 1, . . . , N − 1 (52)

the elements of which are given by the Fourier transform

fm =
∫ 2π

0

dϕ

2π
e−imϕf (ϕ) (53)

of the functionf (ϕ). We had incurred two examples in (9), (10) and (33), (34). The
theorem in question says that for largeN the above determinant is given by

ln T ({f }) = Nl0 +
∞∑

n=0

nlnl−n (54)

where the ln are the Fourier coefficients of lnf (ϕ), i.e. lnf (ϕ) = ∑∞
n=−∞ ln einϕ .

The conditions the functionf (ϕ) must meet for the above limiting form to hold are
(i) f (ϕ) 6= 0 for 0 6 ϕ < 2π , (ii) argf (2π) = argf (0), (iii)

∑∞
n=−∞ |fn| < ∞, and

(iv)
∑∞

n=−∞ |n||fn|2 < ∞; they are fulfilled in all examples of interest here.
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In a first application we return to the Toeplitz determinant (34) which gives the density
P 2

N,n of the nth trace. The only non-vanishing Fourier coefficients of lnf (ϕ) = −ik cosnϕ

are l±n = −ik/2 whereupon we get the Gaussian anticipated in the previous section,

P̂ 2
N,n(k) = e−nk2/4 ⇐⇒ P 2

N,n(t) = 1

nπ
e−|t |2/n for N � 1. (55)

No more difficult to obtain is the joint density of the firstn traces

P
β

N(t1, . . . , tn) =
n∏

m=1

δ2

(
tm −

N∑
i=1

eimϕi

)
(56)

since its Fourier transform̂P 2
N(k1, . . . , kn) is once more of the form (52) with

f (ϕ) = exp

(
− 1

2i
n∑

m=1

(km e−imϕ + k∗
m eimϕ)

)
. (57)

The non-vanishing Fourier coefficients of the logarithm of that latter function arelm =
−ikm/2, l−m = −ik∗

m/2 with m = 1, . . . , n. The theorem (54) thus yields, forN � n,

P̂ 2
N(k1, . . . , kn) = exp

(
−

n∑
m=1

m|km|2/4

)
⇐⇒ P 2

N(t1, . . . , tn)

= 1

n!πn
exp

(
−

n∑
m=1

|tm|2/m

)
(58)

i.e. the product of the marginal distributions of the firstn traces. The result generalizes
in an obvious way to the joint density of an arbitrary set of finite-order traces. We thus
conclude that in the limitN → ∞ the finite-order traces are statistically independent and
all have Gaussian distributions.

We can now briefly comment on the conditions of applicability of the Hartwig–Fisher
theorem given above. The first two of them are clearly fulfilled here since i lnf (ϕ) as given
by (57) is real, continuous, and periodic. The third and fourth conditions are met since the
derivativef ′(ϕ) = ∑∞

m=−∞ imfm eimϕ is square integrable (trivially indeed since i lnf (ϕ)

is a finite Fourier series); in particular,f ′(ϕ) obeys Parseval’s identity,
∞∑

m=−∞
|m|2|fm|2 =

∫ 2π

0
|f ′(ϕ)|2 dϕ = π

n∑
m=1

m2|km|2 < ∞. (59)

Since |m||fm|2 6 |m|2|fm|2 it follows that
∑∞

m=−∞ |m||fm|2 < ∞, i.e. the validity of
condition (iii).

Finally, we invoke Cauchy’s inequality in
∞∑

m=−∞
|fm| = |f0| +

∞∑
m6=0

∣∣∣∣ 1

m

∣∣∣∣|mfm| 6 |f0| +
( ∞∑

m6=0

∣∣∣∣ 1

m

∣∣∣∣2)1/2( ∞∑
m6=0

|mfm|2
)1/2

. (60)

Upon using (59) and the convergence of
∑∞

m6=0 1/|m|2 we verify condition (iv).
For finite dimension the independence as well as the Gaussian character of the traces

are only approximate. For sets of traces both of these properties tend to get lost as the sum
of the orders of the traces in a set increases. In particular, since all tracestn are uniquely
determined by theN real eigenphases, only12N traces can be independent.

Preliminary numerical studies suggest that the finite-order traces might be similarly
independent and Gaussian for the COE and the CSE. For the CPE, of course, the
independence holds trivially.
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5. Remarks on the distributions of coefficients of secular polynomials

As we have just seen the first few tracest1, t2, . . . of large unitary matrices drawn from any
of the circular ensembles display no noticeable correlations. It follows that the coefficients
a1, a2, . . . must bear strong mutual correlations simply sincean can be expressed in terms
of the first n traces through Newton’s formulae (25). One must therefore expect that the
explicit form of the marginal and joint distributions of thean are hard to come by. An
exception is provided bya1, the marginal distribution of which is trivially related to that of
the first trace sincea1 = t1.

A slightly less trivial result may be obtained for the distributionP(a2) of the second
coefficient. Sincea2 = 1

2(t2
1 − t2) we may invoke the CUE joint distribution (58) of the

first two traces to get

P(a2) =
√

2e

π3

∫ 2

0

dx√
x(2 − x)

exp

(
− 1

x
− |a2|2x

)
. (61)

A saddle-point approximation to the foregoing integral immediately reveals thatP(a2)

decays exponentially for largea2. Proceeding similarly one may combine Newton’s
formulae with the joint distribution of the traces to get the marginal and joint distributions
of the first fewan, with decreasingly compact and enjoyable results.

Figure 5 presents the distributions of some moduli|an| as obtained numerically from
105 CUE matrices of the size 10× 10. For n = 2 these numerical data agree well with
the distribution 2π |a2|P(a2) according to (61). All of those curves grow linearly out of the
origin with a slope increasing with the indexn of the coefficientan. On the other hand, all
of these distributions but the first are characterized by a long exponential tail. The latter
originates from the convolution type integrals which combine the densities of the traces to
those of the coefficients; it contrasts with the Gaussian tail of the distribution of the first
coefficient. The qualitative features just outlined for the CUE are shared by the distributions
P(an) for the other canonical ensembles.

6. Comparison with a dynamical system

We propose here to examine how far our results on distributions of the coefficientsan

and tracestn of matrices, drawn from the canonical circular ensembles, are applicable to
dynamical systems. Choosing the familiar model of the periodically kicked top [3, 23] we
work with a Floquet operator of the form

F = exp

(
−i

kx

2j + 1
J 2

x − ipxJx

)
exp

(
−i

ky

2j + 1
J 2

y − ipyJy

)
× exp

(
−i

kz

2j + 1
J 2

z − ipzJz

)
. (62)

This involves the components of an angular momentum operatorJx , Jy , Jz which satisfy
standard commutation relations, [Jx, Jy ] = iJz etc. The quantum numberj fixes J2 =
j (j + 1) and the size of the Hilbert space,N = 2j + 1.

For generic values of the parameterskx , ky , kz andpx , py , pz the corresponding classical
dynamics is chaotic and there is no geometric nor anti-unitary symmetry left [23]. All
previously studied statistical properties of the quasi-energy spectrum and the eigenvectors
were found to be remarkably faithful to the predictions of the CUE [3]. On the other
hand, when the parametersky andpy (or, instead,kx andpx) are set to zero, an anti-unitary
symmetry under time reversal appears, and in this case the spectral and eigenvector statistics
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Figure 5. Distribution of the moduli of the coefficients
|a1| (short-dashed curve),|a2| (dotted), |a4| (dash-dotted
curve) and|a6| (long-dashed curve) for CUE matrices of
sizeN = 20. Distributions of the two first coefficients are
compared with theoretical predictions (narrow curves).

Figure 6. Mean squared traces|tn|2 (circles) and coefficients
|an|2 (triangles) for orthogonal tops are compared with COE
results (curves). Data are averaged over 20 000 different
Floquet matrices of the structure (6.1) as described in the
text.

were found as of the COE type. We shall refer to the two variants of the model as to the
unitary and orthogonal top, respectively.

Before presenting our data for the tracestn and the secular coefficientsan of various tops
a word of caution is in order. Previous statistical analyses of tops were made for spectrally
local quantities such as low-order correlations of the level density, the distribution of nearest-
neighbour spacings, or for components of eigenvectors; what distinguishes these quantities is
a certain self-averaging character. A single Floquet matrix of large dimensionN provides a
sufficient data basis to extract reliable means or even distributions from. Now, the sequence
of the tracestn and that of the secular coefficientsan are not in any way self-averaging since
such a sequence with 16 n 6 1

2N stands for a whole quasi-energy spectrum and therefore
changes in a system specific manner when control parameters are varied. Consequently, it
would not make sense to compare such a sequence for an individual Floquet matrix with
the means calculated here for the various circular ensembles. We must rather ask whether
an ensemble of Floquet matrices of the type (62), defined by a whole set of values for the
various control parameters, is faithful to the prediction based on the circular ensemble of
random matrices of the same symmetry class. It is in this sense that we have undertaken
the comparison to follow.

Figure 6 shows then dependence of the variances of the traces (circles) and of the
coefficients (triangles) for orthogonal tops. The order of the characteristic polynomial was
taken asN = 41 by choosingj = 20. Data from 20 000 matrices were gathered by
picking ky , kz from intervals of length 3 around 10 andpy , pz from [3π/8, 5π/8], all with
independent box distributions. These intervals were chosen so as to secure classical chaos
and to avoid geometric symmetries. The agreement with the COE is obviously satisfactory.

Analogous data for unitary tops are presented in figure 7. The agreement with the
CUE predictions is acceptable in the sense that there is no doubt about the universality
class. However, system specific behaviour is clearly visible for low-order traces and even
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Figure 7. As in figure 6 for unitary tops. Curves
denote the CUE results.

Figure 8. As in figure 6 for symplectic tops.
Average over 2000 matrices as described in the
text. Curves denote CSE results.

in all secular coefficients. Qualitatively, such deviations from random-matrix theory are
not unexpected since low-order traces do contain primarily system specific information
retrievable from short periodic orbits and since thean even for largen contain low-order
traces as expressed in Newton’s formulae.

Symplectic tops can also be constructed by securing an anti-unitary symmetryT with
T 2 = −1 and avoiding geometric symmetries [3]. The Floquet operator

F = exp

(
−i

k1

2j + 1
J 2

z − i
k2

2(2j + 1)
(JxJz + JzJx) − i

k3

2(2j + 1)
(JxJy + JyJx)

)
× exp

(
−i

k4

2j + 1
J 2

z

)
(63)

in a representation with half-integerj is a good example. A set of 2000 matrices with
j = 39.5 and coupling constantski drawn at random from a hypercube of length 0.4 near
10 gives data shown in figure 8. The agreement with the CSE is better than could be hoped
for.

Acknowledgments

We would like to thank Nils Lehmann for helpful cooperation and Pragya Shukla for
first efforts to calculate the mean squared secular coefficients for the COE and the CSE.
Financial support by the Sonderforschungsbereich ‘Unordnung und große Fluktuationen’
der Deutschen Forschungsgemeinschaft is gratefully acknowledged.



Secular determinants of random unitary matrices 3657

Appendix A. Differential equation for the generating function

Let us recall the heuristic way we first approached the mean squared secular coefficients (19),
(23), and (24). After deriving the Pfaffians (18) and (21) we applied an algebraic computer
program to evaluate the|an|2 for small dimensionsN and then proceeded analytically
to n = 1, 2 and arbitraryN . We thank N Lehmann for the computer work and also
for his intuition in proposing (23) with us. Having eventually proposed (19) as well we
speculatively extrapolated to the general form (24) for arbitrary positiveβ.

To prepare for the proof of (24) we observe the equivalence to the recursion relation

(n + 1)

(
1 + β

2
(N − n − 1)

)
|an+1|2 = (N − n)

(
1 + n

β

2

)
|an|2 (A1)

with |a0|2 = 1. Multiplying (A1) by xn, using(x∂/∂x)xn = nxn, and summing fromn = 0
to n = N − 1 we obtain the differential equation (25), the polynomial solution of which
with P

β

N(x) = 1 generates the mean squared secular coefficients. A few elementary steps
will now yield the validity of the differential equation.

We start from the definition (4) of the generating function, settingλ = x, µ = 1 and
take the derivative with respect tox,

∂P (x)

∂x
= −

〈 N∑
i=1

1

eiϕi − x

〉
(A2)

where the angular brackets denote an average with the whole integrand of (A2) as the
weight. On the other hand, taking the derivative with respect toµ before settingµ = 1 and
exploiting the invariance of theN -fold phase integral under a constant shift of all phases
we get

x
∂P (x)

∂x
= −

〈 N∑
i=1

1

e−iϕi − 1

〉
. (A3)

Next, we differentiate (A2) once more,

∂2P(x)

∂x2
=

〈 ∑
i 6=j

1

(eiϕi − x)(eiϕj − x)

〉
=

〈 ∑
i 6=j

−2

(eiϕi − x)(eiϕi − eiϕj )

〉

= −
〈 ∑

i 6=j

e−iϕi

(eiϕi − x)

(
1 − i cot

ϕi − ϕj

2

)〉
. (A4)

Realizing that the cotangent function may be replaced by a derivative acting on the joint
density of eigenvalues (2),(

∂

∂ϕi

− β

2

∑
j (6=i)

cot
ϕi − ϕj

2

)
d

β

N = 0 (A5)

we can transform the last member in (A4) by partial integration. A little algebraic
hocuspocus then gives, with the help of (A2) and (A3),

∂2P(x)

∂x2
=

(
N − 1 + 2(2 − x)

β(1 − x)

)
1

x

(
∂P

∂x
+

∑
i

〈 e−iϕi 〉
)

+ 2

β(1 − x)

(
−

∑
i

〈 e−iϕi 〉 − NP + x
∂P

∂x

)
. (A6)
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Finally, the average
∑

i〈 e−iϕi 〉 can be expressed in terms of the generating functionP and
its derivative∂P/∂x by employing the identity

∑
k〈 e−iϕk 〉 = ∑

k〈i∂ e−iϕk /∂ϕk〉, integrating
by parts, and again invoking (A2), (A3) and (A5),∑

i

〈 e−iϕi 〉
(

2 + β

2
(N − 1)

)
= (x − 1)

∂P

∂x
− NP. (A7)

Upon inserting this in (A6) we obtain a differential equation for the generating functionP

which is easily put into the form (25).
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