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Abstract. We consider the characteristic polynomials of random unitary mattiogsswn from
various circular ensembles. In particular, the statistics of the coefficients of these polynomials are
studied. The variances of these ‘secular coefficients’ are given explicitly for arbitrary dimension
and continued analytically to arbitrary values of the level repulsion expopenThe latter
secular coefficients are related to the traces of powet$ by Newton’s well known formulae.

While the traces tend to have Gaussian distributions and to be statistically independent among
one another in the limit as the matrix dimension grows large, the secular coefficients exhibit
strong mutual correlations due to Newton’s mixing of traces to coefficients. These results might
become relevant for current efforts at combining semiclassics and random-matrix theory in
quantum treatments of classically chaotic dynamics.

1. Introduction

Circular ensembles of unitary matrices were first considered by Dyson [1] and described
in detail by Mehta [2]. They are used to describe the quantum statistics of periodically
driven systems (see [3] and references therein) and of scattering processes [4]. It is the
unitary Floquet operator in the first case and the unitgnyatrix in the second that the
random unitary matrices in question attempt to mimic with respect to certain more or less
universal properties. Systems with global chaos in their classical limit and with time reversal
invariance either present or strongly broken exhibit the greatest degree of universality in
their statistical properties and tend to fall into one of the universality classes represented
by the circular orthogonal, symplectic, or unitary ensembles (COE, CSE, CUE). The so-
called Poissonian ensemble (CPE) of diagonal unitary matrices with independent unimodular
eigenvalues has also found applications for certain classically integrable systems. There has
been a recent interest in the analysis of intermediate ensembles of unitary matrices which
describe the crossover between different universality classes [5-7]. Direct links between
corresponding Gaussian and circular ensembles have been established lately [8, 9].
Unitarity constraints imposed on a random matrix of small $¥zeause a significantly
non-Gaussian character of the distribution of matrix elements [10-12]. Moreover, various
statistics of unitary matrices from the different circular ensembles depend strongly on the
matrix size, and for smalv differ a great deal from the asymptotic larfyeproperties. This
is in contrast to the Gaussian ensembles of Hermitian matrices [2] which tend to display
lesser sensitivity to the matrix dimension.
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For example, the normalized level spacing distributi($) suffers a cut-off at§ = N,
and is close to the Wigner-like distributions only f&r upwards of roughly 10. Moreover,
Baranger and Mello [13] have shown that the distribution of transmission intengitiEs
is non-Gaussian foN = 2 and 4, whereas coming close to Gaussian for laijer

We were led to study the secular polynomials of random unitary matrices in an attempt
at constructing semiclassical quasi-energy spectra for the kicked top under conditions of
classical chaos. Periodic-orbit theory can be invoked only insofar as periodic orbits are
available. In practice, as for any system for which no simple symbolic dynamics is known,
one can hope to find all periodic orbits with periods no longer than mayhg ~ 10,
due to the infamous exponential proliferation. These would allow one to semiclassically
evaluate traces of powers of the Floquet operatdt’ twith n up tonmax. A Hilbert space
of dimensionN = 2nq« is then accessible since Newton's formulae [14] (see section 2)
allow one to express the first,ax coefficients of the secular polynomial in terms of the first
nmax traces; the so-called self-inversiveness of the secular polynomials of unitary matrices
[15] then yields the second half of the set of coefficients. The practical applicability of
periodic-orbit theory would thus seem severely limited. Inasmuch as the dimeNsin
the Hilbert space is proportional to the effective size of quantum fluctuations (formally,
N « 1/h) one runs out of periodic orbits just when the semiclassical approximation begins
to have araison détre

To ease the dilemma just described, one might hope to increase the size of the Hilbert
space by throwing dice, according to random-matrix theory, for traces with exponents
nmax < B < N —nmax. TO prepare for such a ‘marriage’ of semiclassical approximations
with random-matrix theory we propose to study here secular polynomials of random unitary
matrices from various ensembles. A previous first step in this direction was taken in [16],
where the means and the mean squares of the coefficients mentioned were calculated for the
CPE and the CUE. A related study was presented by Bogonetliay [15,17] who gave
the distribution of the roots of random self-inverse polynomials.

Even though the bulk of the work to be presented is analytical we performed extensive
comparisons with numerical data on ensembles of unitary matrices. To generate the data
we constructed COE and CUE matrices with the algorithm given in [18] and CSE matrices
as described in [19].

2. Coefficients of secular polynomials

2.1. Theory

The secular polynomial of a unitary matrix of size N is defined as

N
detU — 1) =Y (=A)"ay_p = [ @ — 1) (1)
n=0 i

where they; are the eigenphases bf andag = 1. We are interested in the statistics of the
secular coefficients, due to various ensembles of random matrices. We shall characterize
these ensembles by their joint densities of Meigenphases;,

Ay (o1 g2, ....on) = C(B. N) | [ 169 — & )F @)
i<j

whereC (8, N) is a normalization constant whilg, the so-called degree of level repulsion,
distinguishes the ensembleg:= 0 for the Poissonian ensemble for which the eigenphases
are independently and uniformly distributed over the interva2ff); the circular orthogonal,
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unitary, and symplectic ensembles are characterized by, respecttvelyl, 8 = 2, and

B = 4. Occasionally we shall allow the paramegeto range freely among the real numbers.

All of the ensembles in consideration are homogeneous inasmuch they do not distinguish
any particular value of any eigenphase. It follows immediately that the ensemble means of
all coefficients of the secular polynomial vanish,

2w
an =/ dos ... dpyaydh (@1, 92, ..., on) = 0. (3
0

Next, we are interested in the ensemble averages which can be obtained from the
generating function

P} =detlU — )(U — )i = [ €% - new — py* 4
k

2

= do; ... d(def,(wl, ©2, ..., ON) H(é‘/’k — M) (E% — w)*.

0 k

For » = €%, u = € it follows from the periodicity of the integrand that the integral
depends on the phases x only through the variable = €%~ . Thus our generating
function may be written as

N [—
Pi) =]]@ —eneis —en) =[] g x) =) x"|a,l? ()
i i n=0

where we have introduced the auxiliary function

flp.x) = (¥ —x)(e" —1). (6)
Hence all correlations,a? for m # n vanish. Moreover, one easily shows
|an|2 = |aN—n|2 (7)

which is in accord with the so-called self-inversivenesg,., = a}ay [14]; being a
consequence of but slightly weaker than unitarity self-inversiveness entails each root of
a polynomial to either lie on the unit circle of the complex plane or to be accompanied by
its inverse as another root.

The variancesa,|? are most easily calculated in the Poissonian ¢ase0,

2 N
Pﬁ(x)zcw,zv)[ /0 d<pf(<p,x)} = 1+x". (8)

Therefore|a, |2 = (V) for g = 0 [16].

Next, we turn to the casg = 2 which was already treated in [16]. Observing that
the function[ ], f(¢:, x) which we want to average is symmetric in thephasesp; and
that the density/2 may be written as a product of two Vandermonde determinants we have
[2,3]

2 zr dVy dm=1)g,—i(n—-1)
P — d e m—L1)¢n—1n—L)¢n , 9
f = [ gt det 1w ©
with m,n = 1,2,..., N labelling the rows and columns of the determinant. The integral

overg,, can now be pulled into theith row of that determinant whereupon we immediately
get

N
Pf,(x) =det((l+x)d(m—n)—8m—n+1) —x8(m—n—1) = ZxN (10)
n=0
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where§(m — n) denotes the Kronecker delta. The foregoing generating function entails the
variance|a,|?2 = 1 for g = 2.
A little more effort is required for the orthogonal and symplectic cages- 1, 4). In
the orthogonal case we again employ the symmetry of the integrand of-tbl integral in
(5) to rewrite that integral, which goes over the hypercube @, o, ..., ony < 27, asN!
times one over the hypertriangler2 ¢; > ¢, > --- > ¢y > 0. Within the hypertriangle
the product of differences takes the form

[Tie” —e«1=]]2 sin<w> — iNOV-D2 ggygmen | gmen), (11)
k<t k<t 2

The second member in this chain of equated expressions is manifestly positive whereupon
the modulus operation can be dropped; the determinant in the last member of (11) has
its rows labelled by the parameter which runs in integer steps betweéN — 1)/2 and

(N 4+ 1)/2; the label for the columns is the one on tNeintegration variables. We may

thus write the generating function as

Pi(x) = N!C(1, N)

x/ dgol...d(pNiN(N’l)/zdel(eim‘“,..-,ém’v)l_[f(fﬂk,x)- (12)
P1>@2...> PN k

For the symplectic case we find it expedient to extend Xhéold integral in (5) to a
(2N)-fold one,

1..2N _
P]‘\‘;(X)=C(4, N)N!/ do1 ... dpoy 1_[ (25in<¢k 2(Pe))

P1>P2>...> Q2N k<t

N 9
| | , — ) 1 - — 13
Xk:l [f(prk x) <8<p 1) (P21 — P2 6)] (13)

wheree is to be sent towards zero from above. To see the equivalence of the foregoing
expression toP;\‘, as given by (5) withg = 4 we simply integrate by parts with respect

to the phases with odd labels. Only those terms survive for whichMtdifferentiations

have turned precisely thos¥ sine functions into cosines which are assigned vanishing
arguments by the delta functions; the remaining sine functions then come in quadruples as,
symbolically, s13514523524 — s§4. We should note in passing that the delta functions in the
foregoing representation df,f‘, reflect Kramer’'s degeneracy and that in our definition of the
secular polynomial for the symplectic ensemble each of the two-fold degenerate eigenphases
appears only once.

The integral representations (12) and (13) are convenient starting points for an explicit
evaluation of the generating functiods and Py. We propose to start with the slightly
easier symplectic case.

In order to actually evaluate thexold integral in (13) we once more employ the
identity (11) as extended toN2 ordered phases; we then integrate over every second phase
to get rid of the delta functions. Upon renaming the remaining integration variables as
v — @ and letting the positive infinitesimal go to zero we arrive at

2 N
Py(x) = (-DVC@N) | d'pdetme™, @ me", "2, )] floe.x)  (14)
0 k=1
with |m| < (2N — 1)/2. Note that we have returned to an integral overNadimensional
hypercube, exploiting the symmetry of the integrand. The difficulty to be coped with how
lies in the fact that each of th& integration variables appears in a pair of rows of the
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2N x 2N determinant. At this point it is helpful to express that determinant by a Gaussian
integral over complex Grassmann variables as

detM = / (1_[ andnk> exp( - Z Uszlnl>- (15)
k ij

Accounting for the matrixM from (14) and performing the R integrals over the;* we

arrive at
on N
/ dN(p detM = / <1_[ d?’}k) [ - % Z Am,m’nmnm’i|
0 k m,m’
= N' / (l_[ dnk> exp[ - ;2L Z Am,m’nmnm’:| (16)
k

m,m’

with the antisymmetric & x 2N matrix

2
Ao = ' =) [ dp ™7 (g )
0
=2n(m —m)(L+x)§(m+m') —8(m—m' +1) —x8(m +m' —1)). (17)

The labelling of the rows and columns df is inherited from the ordered-phases form of
the Vandermonde determinant (11): baethandm’ run in integer steps from-(2N — 1)/2

to (2N —1)/2. The remaining Gaussian integral in (16) is easily recognized as the Pfaffian
+/detA of the antisymmetric matrid, such that the generating function in search takes the
form

Pl (x) = C(4, N)N!/detA. (18)

The sign of the Pfaffian/detA must be chosen such tha’ﬁ(x) is positive for positive
values ofx, according to the definition of the generating function.

In a first attempt at evaluating the Pfaffian one may rejoice in the ease in finding it for
small values ofN which latter suggest a surmise for the general variance,

||2_<N) 1x3...(2n—1)
W=\ ) oN = D@N =3)...2N =21 + 1)

This conjecture will be proven in the appendix.

We finally turn to the orthogonal case, taking up the integral representation (12) for
Pi(x). For the sake of simplicity let us assume an even dimenaionWe start with
integrating over the angleg with even indices, pulling the (2k)th such integral into the
(2k)th row of the determinant; while that integral at first appears as going over the interval
Va1 < P < Px—1 We can hurry to replace the lower limit with zero, simply by adding
the Nth column to the(N — 2)th, the resulting(N — 2)th to the (N — 4)th and so forth,
and thus obtain

Pi(x) =C(1, N)N!/

$1>¢3>...>¢N-1

for g = 4. (29)

dpadigs ... dy_ai VD72 det(ém‘ﬂlfwl, ),

®1 . X ¢3 .
‘ fo do €% £ (g, %), &% F (g, x), [O dwé’”“’f(so,x),u-)- (20)

Now the integrand is symmetric in the remaining integration variables whereupon we
may extend the integration range to tiVedimensional hypercube of edge length and

make up by dropping the facta¥!, as we have previously done in (14). The analogy with
(14) in fact goes much further: once more, every integration variable appears in two rows



3646 F Haake et al

of the determinant. Going through precisely the same reasoning as before we again incur a
Pfaffian form,

Pi(x) = C(1, N)N'v/detB (21)

with the slightly more unpleasant antisymmetric matrix

27 . o
B = —i dedy’ f (@, x) f (@', x) € Dsignip — ). (22)
0

Here, the sign function ensures the antisymmetry of the marixith |m| < (N — 1)/2.
Again, the Pfaffian suggests, by its easily evaluated form for small dimensip@asguess
for the variances,

— n(N —n)
=14+ -~ for g =1. 23
la TNt p 23)
We refer to the appendix for the proof of that surmise fbeven or odd.
Upon inspecting the variances found above foe= 0, 2 and conjectured fop = 1,4

we were led to extrapolate to arbitrary non-negafivas

(a2 = <N> 11+ 8/2(2+B)...(1+ (1 —1)B/2)
n) AL+ N-18/2)(1+ (N —-28/2)...(1+ (N —n)B/2)
_ <N>F(n+2/,8)l"(N—n+2/,3). (24)
n I'(2/BT(N +2/B)
This expression has poles At= —2/(N — 1), —2/(N — 2),...,—2/(N — n) and zeros
atg = -2/1,-2/2,-2/3,...,-2/(n — 1) for n < N/2. It is thus analytic and positive

for all positive 8, and it goes to zero foB — oo. This looks like strong evidence for
the general validity claimed before. We shall actually turn the conjecture into a theorem in
the appendix. The proof will be based on the fact that (24) is equivalent to the differential
equation

0 PUnv_x 2\ PPy = (Nl B9\ pe
8x<1+2(N x8x>>PN(x)_(N xax)<1+2xax>PN(x) (25)

for the generating functiowﬁ(x).

2.2. Numerical results

We constructed random unitary matricEsof different sizes according to the algorithm
developed in [18] for the CUE and the COE and later generalized for the CSE [19]. For each
such matrix we calculated a complete sef\obecular coefficients, by first computing the
traces of arbitrary powers, = tr(U"), via either matrix multiplication or diagonalization;
Newton’s formulae [14] (see next section) then led to dhe

Precise estimates of the variance of any random variable require a much larger sample
than estimates of the mean. We therefore present numerical results obtained for large
samples of relatively small random matrice§¥ (~ 20), although some computations
performed forN ~ 200 provide similar results.

Our above formulae for the varian¢e,|? of the secular coefficients involve the index
n of the coefficient and the matrix siz€. The dependence oN saturates for largev.
Figure 1 shows the dependence wotior a fixed matrix size. Due to the property (7) of
self-inversiveness this curve is symmetric about N/2.

The data of all three ensembles coincide (up to a statistical error) with the theoretical
predictions. Note that the width of the distribution of coefficients decreases with increasing
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6
T2 0.0,
layl w_D/ 'q\q
" 5 o COE g
8 *
/ S,
4 F ’3\\
3 7 A\
/'F{ Q‘
/ \
2 /g] h\
14-o-0 Y ) Figure 1. Variance of the distribution of theth coefficient
0 S |a, |2 obtained from 40000 matrices of si2é = 20 typical
0 5 10 15 29 Of COE (O), CUE (O), and CSE(a). The lines represent

n our analytical results.

degrees of repulsion and is smallest for the symplectic ensemble. Additional numerical
investigations confirmed the expectation that the phases af,tlage distributed uniformly
in the range [02r) for any canonical ensemble.

Even though the formula (24) for the variance is primarily meant to cover the four
canonical ensembles = 0 (CPE), 1 (COE), 2 (CUE), and 4 (CSE), we could not resist
the temptation to test its usefulness for intermediate cases. To this end we constructed
an ensemble of unitary matrices interpolating between the Poisson and unitary ensembles
according to the method presented in [20]. This intermediate ensemble depends on one
control parametes, varying from 0 (CPE) to 1 (CUE). Figure 2 shows the dependence of
the variance of the first two coefficients on the matrix siedor § equal to 0.0, 0.2, 0.4,

0.7, and 1.0. For each case the value of the parangetdiosen to fit thev dependence of
|a1)?, inserted into (24), provides a fair approximation fa#|2, and similarly for subsequent
coefficients. This astonishing fact reveals a certain validity of the general formula (24) with
non-integer values gb for ensembles in between the usual universality classes.

3. Traces of powers of matrices from circular ensembles

The characteristic polynomial of a matrix is related to the traces of its powers

N
ty =tr(U") = Z gnei (26)
i=1
by
detU — ) = (=0)V exp(trln (1 - iU)) . (27)

Expanding both sides in powers bfone finds the explicit relations between theand the
t, which were already established by Newton [14]. A compact representation is

n 1 0 o --- 0
1 5] 5 2 0 s 0
a, = J 13 15) 1 3 0 |. (28)
Iy h-1 2 -3 -+ 1
We infer from (27) that there are onlyy independent traces, ..., fy. Moreover, for

unitary matrices for which the eigenphasggsare real, the number of independent complex
parameters is again reduced by a factor of a half. The fiy& traces suffice to determine
all N coefficientsa, (cf (7)).
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[all — 60
12 lagl b)
10 50 .
40 ,4”
30

20
10 > )
0 e ':l“ g
4
2 6 8 10 12 N

Figure 2. Variance of coefficients for crossover CPE—-CUE: |@)2 and (b)|a2|2 as functions
of the matrix sizeV. Control parametes is equal to @ (Poissony)), 0.2 (@), 0.4, 0.7 W), and
1.0 (CUE, QO ), while the level-repulsion parametgrfitted simultaneously foboth coefficients
equals 0.0, 0.06, 0.24, 0.69, and 2.0, respectively.

Clearly, ther, all vanish in the mean for all of the circular ensembles considered here,
due to the uniformity of the distribution of thg. For a more complete characterization of
the statistics of the traces we propose to calculate their marginal probability densities

N
Py (1) = 82<t -y ei"%) (29)
i=1

wheres?(r) is a two-dimensional delta function in the complexane; the ensemble average
is to be performed with the weight (2). It turns out to be convenient to first calculate the
Fourier transform

Py () = exp< — 3y (ke ke e+in¢f>). (30)

Due to the periodicity of all functions of the phasgsinvolved, the characteristic function
PJj (k) depends ork only through the modulugk| while the densityPy ,(t) is only a
function of |z|. Henceforth we assumie= k* = |k| and write

Py () = exp( —iky cos(mp,-)). (31)

We immediately obtain for the Poissonian ensemble
Py (k) = Jo(k)™ (32)

Jo(k) being a Bessel function. It follows that the densit]@%n are the same for all values
of the exponent:, a rather intuitive result given the statistical independence of the phases
@; in the Poissonian case. Equally expected for such a Poissonian random walk is the
independence of the mean squared ‘displacement’, of,|2 = N.

For the unitary ensembled = 2, we exploit the symmetry of the exponential to be
averaged in the phasesand employ the analogue of (9) and find the characteristic function
to take the form of a Toeplitz determinant,

~ 2 d . )
P]%I n(k) = det(/ Zi e"/’(z_’”) e—lkcos(mp)) L,m=1 ..., N. (33)
, 0 -
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The remainingy integral again yields Bessel functions and can be written as

+00

Pz, (k) = det( Z Jis1 () (—=DP18(6 — m + ns)>. (34)
§=—00

Clearly, the number of non-zero elements of Me N determinant here incurred decreases

as the ordem of the tracer, in consideration grows. In particular, far > N only the

diagonal elements are non-zero such that

PZ (k) = Jo(k)" forn > N. (35)
At the other extreme; = 1, we meet with the full Toeplitz determinant
Jo —ihi —I

. —iJy Jo —iJ1 .-
Pi o =Tv=|_p _—isy Jo | (36)

Intermediate values of lead to the subdeterminarity obtained by cancelling the last
N — m rows and columns ofy,

Pz, (k) =1 "1 for N >n> LN
B2 (k) = T 23N for N >n > 3N (37)

and so forth. This can be seen as follows. Starting Witk n > %N one checks that the
determinant in (34) has non-vanishing elements residing only in the diag@als (£ —m),

and in two subdiagonals;iJi(k)§(¢ — m + n). One moves th&l + n)th row to become
the second, then thél + n)th column to become the second and thus isolatesxa22
block T, = Jo(k)? + Ji(k) in the upper left corner. One repeats this process by moving
the (2 + n)th rows and columns to become the fourth and so forth until one arrives at a
block diagonal determinant in which thex22 block 7> and the 1x 1 block T; = Jo(k)
appearN — n times and 2 — N times, respectively. The procedure f%)N >n> %N is
analogous: one moves tlig + n)th and the(2 4 n)th row to become the second and third,
respectively, then does likewise to tlie+ n)th and (2 + n)th column and thus generates
the 3x 3 block 73 and so forth. As: decreases towards unity we meet all the

P2, (k) = TN imtin-N for NJm>n > N/(m+ 1) (38)

withm=1,...,N.
Simplest to deal with is, of course, the case of the smallest non-trivial dimemngéien2,
and there we obtain

P2 = JU) + J2(k) P2k = JE(K). (39)
By Fourier transforming we produce the densities of the first and second trace,

Va4 —|t)?

va— il 40
272t (40)

P2(1) = P3y(1) =

1
m2t]\/4— |1]2

Now we propose to show that the distributidtf | of the nth trace behaves like a

Gaussian with respect to its momerits|2” for sufficiently low orders. To this end we
define the functions

T (k) = (k)" oy (k) (41)
which have the property (Abramowitz and Stegun 9.1.30 [21])
i d

zﬁjm(k) = ‘]mfl(k)- (42)
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The Toeplitz determinarity can then be rewritten as
Ty = detJ,,, Ju_1,...) withm =0,...,N — 1. (43)
From this we find with (41) and (42) fdr< N

1 PN
(25 v ()

To prove the foregoing identity we proceed as follows. Applyiidgk)(d/9k) once to

Ty we get a determinant differing frorfiy only in the last column where, according to
(42), J,,—n+1 — Jn_n. Now settingk = 0 and invokingJ,,(0) = O for positive integen
while J,,(0) = (—%i)m/(—m)! form =0, -1, —2,... we face a determinant with vanishing
elements below the diagonal and thus equalling the product of its diagonal elements; among
these only the last/1(0) = —%i, differs from unity whereupon (44) is proven fér= 1.

In the next step{ = 2, Ty is changed such that only the elements in the last two columns
may get their indices shifted; again settikg= 0 we are left with a 2x 2 determinant
which yields (44) for¢ = 2. In the/th step we get a sum df x ¢ determinants which is
evidently independent of the dimensiahfor £ < N. Due to that independence we need
not pursue the non-trivial task of proving (44) for arbitraryd N < oo but rather invoke

the much more easily proven result, to be established in the next section, thatforo

the determinanfy is a Gaussian iit. It follows that for finite N the expansion of’y in
powers ofk? coincides with that of exp-k2/4) up to theNth power. Equations (35)—(37)
show thatP,%,!n(t) behaves like a Gaussian distribution with respect to all momjeriés

of ordersm < N/n. In particular, we find for the variances of the traces

_ n forO<n <N
|tn|2= (45)
N forn >N .

Interestingly, these variances grow towards the Poissonian walasn — N from below
and then remain stuck asgrows further.

We now proceed to the orthogonal and symplectic cases. Starting as in the previous
section with integrating over alternating variables we find for the orthogonal case with even
N and the symplectic case

Py (k) oc (detA)™? forp=1

Py (k) oc (detB)? for g =4 (46)
with the antisymmetric matrices
An =3 100 D

x§(m +m' +n(s +5)) with |m|, |m'| < (N —1)/2
B = Z Jis| k) (=D)S18(m + m’ + ns) with |m|, m'| < (2N — 1)/2. (47)

We have not proven the Gaussian property but have calculated the variances. In the
orthogonal cas¢g = 1) we find

2 1
a3y L for 0<n< N
. —~m+(N-1))/2
|tn| = N 1 (48)
2N—nZ forn >N

m+n—(N+1)/2

m=1
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/ Figure 3. Mean squared traces,|2 for 10* matrices of
0 5 10 15 20 Size N = 20 typical of CPE ¢), COE (J), CUE (O), and
n CSE (1) compared with analytical results (curves).

while the symplectic casé3 = 4) yields
n 1
1 1
sn+ 5n _ for0 <n < 2N
) N+1-m (49)
N for n > 2N.
Needless to say, these mean squared traces could have been read off the well known
two-level correlation functions of the circular ensembles the Fourier transforms of which our

variances in essence are [2]. Indeed, by introducing a non-normalized density of eigenphases
as

|LJ2=

m=1

N N 00
pl@) =21 Slp—g)=) > e (50)
i=1 i=1 n=—00
one immediately sees that the two-point correlation function of that density reads
p@p(@) = > |2 (51)
n=—oo

Figure 3 reveals excellent agreement of the mean squared traces as computed for
samples of 4x 10* 20 x 20 matrices of the four ensembles considered with the analytical
predictions. Note that for the Poisson circular ensembl@ equals the matrix sizev,
without dependence om. For smalln the variance of traces decreases with the repulsion
parameterg. The data for the symplectic ensemble are obtained withdinensional
matrices, which providev different eigenvalues each.

Figure 4 displays the similarly fine agreement of our analytical results for the densities
PZ , with numerical data for sets of random matrices drawn from the circular unitary
ensemble. This demonstrates that for finitand largeN the distributions are Gaussians.
We have performed similar numerical studies for the orthogonal and symplectic ensembles,
again finding Gaussian marginal distributions for the traces of sufficiently large matrices.
Moreover, in all cases studied, the distribution of the traces was isotropic, i.e. without any
phase dependence.

We should add a word of intuitive explanation to the statistics of the traces for
large dimensionsV. The nth trace of a unitary matrix may be thought of as a random
walk in the complex plane, with each of th€ steps of unit length and thgh step
in a direction given as: times theith eigenphasey;. These directions are mutually
independent and uniformly distributed for the Poissonian ensemble which fact explains
the independence of the characteristic function (32} @ind the ensuing first and second
moments, = 0, |t,]2 = N. In accordance with the central limit theorem the rescaled
tracesty /+/N tend, withN — oo, to have a Gaussian distribution of zero mean and unit
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P(t,)
0.8

0.6
0.4

0.2

Figure 4. Distribution of the moduli of the first five

0.0 S traces|t], ..., 5| for 10° CUE matrices of sizeV = 20.

0.0 05 1.0 15 2.0 25 30 35 Narrower full curves correspond to Gaussian distributions
It,! with appropriate variances, |2 = n.

variance. Without such rescaling, the momentg” with m <« N differ from those of the
Gaussian defined by the first two moments only by corrections of relative oydeéer 1

For the circular ensembles wih > 0 the phases; display repulsion of degre@ such
that the directions of subsequent steps in the random walk mentioned are not independent.
The correlations between the phases cannot prevent near-Gaussian behaviour of the traces
t, with n <« N, as is intuitive in view of the local character of the spectral correlations.
Moreover, while the phases cover the interval [027) uniformly once, their multiplega;
go around that intervat times such that fon > 1 the phaseag;[mod(27)] may exhibit
accidental close neighbourhoods of originally distant

4. Joint density of traces for large CUE matrices

We shall employ here a powerful theorem about determinants of Toeplitz matrices, due
originally to Sze@ and Kac and extended by Hartwig and Fisher [22], to find the marginal
and joint distributions of the traces of CUE matrices in the limit of large dimensidv. As

our starting point we recall the identity (9) for the CUE average of a symmetric function of
all N phases. Assuming, moreover, that symmetric function to have the form of a product
we can pull the integral over thath phasep,, into themth row of the determinant in (9)

and thus express the average as a Toeplitz determinant,

N
nf(qnm)=dei(fm,fm_1,...,f_N+1)=T({f}) m=01...,.N—-1 (52)
m=1
the elements of which are given by the Fourier transform
2 d )
f= [ e @) (53)
0 JT

of the function f(¢). We had incurred two examples in (9), (10) and (33), (34). The
theorem in question says that for larfyethe above determinant is given by

INT((f}) = Nlo+ ) _nll-, (54)
n=0

where thel, are the Fourier coefficients of If(p), i.e. Inf(p) = Y20 _ 1,€".

n=—00

The conditions the functionf(¢) must meet for the above limiting form to hold are

() flp) # 0for 0 < ¢ < 27, (i) argf(2r) = argf (0), (i) >, Iful < oo, and
(iv) Y02 Inllfal? < oo; they are fulfilled in all examples of interest here.
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In a first application we return to the Toeplitz determinant (34) which gives the density

Pf,yn of the nth trace. The only non-vanishing Fourier coefficients of (p) = —ik cosng
arel., = —ik/2 whereupon we get the Gaussian anticipated in the previous section,
N 1
P2 (=" = p2 (= —el/m  forN>1 (55
’ ’ nmw

No more difficult to obtain is the joint density of the finsttraces

n N
Pit. ...t =[] 52<rm -3 ei'"‘ﬁf> (56)
i=1

m=1
since its Fourier transforrﬁj\z,(kl, ..., k,) is once more of the form (52) with
flp) = exp( — 3> (k€™ k7, é"’v’)). (57)
m=1

The non-vanishing Fourier coefficients of the logarithm of that latter functionl,are
—iky/2,1_, = —ik} /2 withm =1, ..., n. The theorem (54) thus yields, fo¥ > n,

n
Pi(ky, ... k) = exp( — Zm|km|2/4) = Pi(t1.....1n)
m=1

1 n 5
= exp( - ; ] /m) (58)

i.e. the product of the marginal distributions of the firstraces. The result generalizes
in an obvious way to the joint density of an arbitrary set of finite-order traces. We thus
conclude that in the limitv — oo the finite-order traces are statistically independent and
all have Gaussian distributions.

We can now briefly comment on the conditions of applicability of the Hartwig—Fisher
theorem given above. The first two of them are clearly fulfilled here sincé (dn as given
by (57) is real, continuous, and periodic. The third and fourth conditions are met since the
derivative f'(¢) = Y o imfy e"¢ is square integrable (trivially indeed since ifitp)
is a finite Fourier series); in particulay;(¢) obeys Parseval’s identity,

00 2 n
S ml2l fl? = /O F@Pde =73 mley? < oc. (59)
m=—00 m=1
Since |m|| fu|? < Im|?|fq]? it follows that }°>°_|m||f.]? < oo, i.e. the validity of
condition (iii).

Finally, we invoke Cauchy’s inequality in

00 © 1 © |1 2\1/2 ; > 1/2
Dol =1s+) ‘|mfm|<|fo|+<z = ) (Z|mfm|2> : (60)
m=—00 m#0 m m#0 m m#0

Upon using (59) and the convergenceEﬁf9é0 1/|m|? we verify condition (iv).

For finite dimension the independence as well as the Gaussian character of the traces
are only approximate. For sets of traces both of these properties tend to get lost as the sum
of the orders of the traces in a set increases. In particular, since all traaes uniquely
determined by theV real eigenphases, on%/N traces can be independent.

Preliminary numerical studies suggest that the finite-order traces might be similarly
independent and Gaussian for the COE and the CSE. For the CPE, of course, the
independence holds trivially.
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5. Remarks on the distributions of coefficients of secular polynomials

As we have just seen the first few tragess, . .. of large unitary matrices drawn from any
of the circular ensembles display no noticeable correlations. It follows that the coefficients
a1, az, ... must bear strong mutual correlations simply siagecan be expressed in terms
of the firstn traces through Newton’s formulae (25). One must therefore expect that the
explicit form of the marginal and joint distributions of thg are hard to come by. An
exception is provided by, the marginal distribution of which is trivially related to that of
the first trace since; = 11.

A slightly less trivial result may be obtained for the distributidria,) of the second
coefficient. Sincer, = %(rf — 1) we may invoke the CUE joint distribution (58) of the
first two traces to get

2
P(az):‘/%/ dxexp<—1—|a2|2x). (61)
73 Jo Vx(2—x) X

A saddle-point approximation to the foregoing integral immediately reveals Rita)
decays exponentially for large,. Proceeding similarly one may combine Newton’'s
formulae with the joint distribution of the traces to get the marginal and joint distributions
of the first fewa,, with decreasingly compact and enjoyable results.

Figure 5 presents the distributions of some modali as obtained numerically from
10° CUE matrices of the size 109 10. Forn = 2 these numerical data agree well with
the distribution z |a,| P (az) according to (61). All of those curves grow linearly out of the
origin with a slope increasing with the indexof the coefficientz,. On the other hand, all
of these distributions but the first are characterized by a long exponential tail. The latter
originates from the convolution type integrals which combine the densities of the traces to
those of the coefficients; it contrasts with the Gaussian tail of the distribution of the first
coefficient. The qualitative features just outlined for the CUE are shared by the distributions
P(a,) for the other canonical ensembles.

6. Comparison with a dynamical system

We propose here to examine how far our results on distributions of the coefficignts
and traces, of matrices, drawn from the canonical circular ensembles, are applicable to
dynamical systems. Choosing the familiar model of the periodically kicked top [3, 23] we
work with a Floquet operator of the form

F =exp| —i i J2—ip.J, ) exp| —i ky J2—ip,J
2j+1°F A 2j+177 ey

.k .
X eXp<_|2ijJ’? — |szz> ) (62)

This involves the components of an angular momentum opevatos,, J, which satisfy
standard commutation relations/.[ J,] = iJ, etc. The quantum number fixes J? =
j(j + 1) and the size of the Hilbert spac¥,= 2j + 1.

For generic values of the parametgysk,, k, andp,, p,, p. the corresponding classical
dynamics is chaotic and there is no geometric nor anti-unitary symmetry left [23]. All
previously studied statistical properties of the quasi-energy spectrum and the eigenvectors
were found to be remarkably faithful to the predictions of the CUE [3]. On the other
hand, when the parametérsand p, (or, insteadk, andp,) are set to zero, an anti-unitary
symmetry under time reversal appears, and in this case the spectral and eigenvector statistics
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P(la,))
0.8

0.6

0.4

Figure 5. Distribution of the moduli of the coefficients
|az| (short-dashed curve)ay| (dotted), |as| (dash-dotted
0.0 ? curve) and|ag| (long-dashed curve) for CUE matrices of
00 065 10 15 20 25 3.0 sizeN = 20. Distributions of the two first coefficients are
layl compared with theoretical predictions (narrow curves).

0.2

Ital” 5

Figure 6. Mean squared tracés |2 (circles) and coefficients

|a, |2 (triangles) for orthogonal tops are compared with COE

results (curves). Data are averaged over 20000 different

0 5 10 15 20 25 30 35 40 Floquet matrices of the structure (6.1) as described in the
n text.

were found as of the COE type. We shall refer to the two variants of the model as to the
unitary and orthogonal top, respectively.

Before presenting our data for the trageand the secular coefficients of various tops
a word of caution is in order. Previous statistical analyses of tops were made for spectrally
local quantities such as low-order correlations of the level density, the distribution of nearest-
neighbour spacings, or for components of eigenvectors; what distinguishes these quantities is
a certain self-averaging character. A single Floquet matrix of large dimenésiprovides a
sufficient data basis to extract reliable means or even distributions from. Now, the sequence
of the traces,, and that of the secular coefficients are not in any way self-averaging since
such a sequence withd n < %N stands for a whole quasi-energy spectrum and therefore
changes in a system specific manner when control parameters are varied. Consequently, it
would not make sense to compare such a sequence for an individual Floquet matrix with
the means calculated here for the various circular ensembles. We must rather ask whether
an ensemble of Floquet matrices of the type (62), defined by a whole set of values for the
various control parameters, is faithful to the prediction based on the circular ensemble of
random matrices of the same symmetry class. It is in this sense that we have undertaken
the comparison to follow.

Figure 6 shows ther dependence of the variances of the traces (circles) and of the
coefficients (triangles) for orthogonal tops. The order of the characteristic polynomial was
taken asN = 41 by choosing; = 20. Data from 20000 matrices were gathered by
picking ky, k, from intervals of length 3 around 10 and, p, from [37/8, 57/8], all with
independent box distributions. These intervals were chosen so as to secure classical chaos
and to avoid geometric symmetries. The agreement with the COE is obviously satisfactory.

Analogous data for unitary tops are presented in figure 7. The agreement with the
CUE predictions is acceptable in the sense that there is no doubt about the universality
class. However, system specific behaviour is clearly visible for low-order traces and even
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L6 ™ icked top from CUE 4
—l 7 14 35-—l Z
W2l = 30 o
lagl
1'0 adddssssnadabanansansaglinstidanasnannas, 25
0.8 20
0.6 15
04 10
0.2 5
0.0 0 . o .
0 5 10 15 20 25 30 35 40 Figure 7. As in figure 6 for unitary tops. Curves
n denote the CUE results.
L6 kicked top from CSE 80
P 1.4 70|——12-
D) 60 tn
1.0 50
0.8 40
0.6 30
04 20
0.2 10
0.0 0 Figure 8. As in figure 6 for symplectic tops.
0 5 10 15 20 25 30 35 40 Average over 2000 matrices as described in the
n text. Curves denote CSE results.

in all secular coefficients. Qualitatively, such deviations from random-matrix theory are
not unexpected since low-order traces do contain primarily system specific information
retrievable from short periodic orbits and since theeven for largen contain low-order
traces as expressed in Newton’s formulae.

Symplectic tops can also be constructed by securing an anti-unitary symmetith
T2 = —1 and avoiding geometric symmetries [3]. The Floquet operator

. kl 2 . 2 . 3
F=exp(— J2 Jodot L) — i g T
Bty gy U g+ )
ke,
exp| —i J 63
x p( 2j+11) (63)

in a representation with half-integgris a good example. A set of 2000 matrices with

Jj = 39.5 and coupling constants drawn at random from a hypercube of length 0.4 near

10 gives data shown in figure 8. The agreement with the CSE is better than could be hoped
for.
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Appendix A. Differential equation for the generating function

Let us recall the heuristic way we first approached the mean squared secular coefficients (19),
(23), and (24). After deriving the Pfaffians (18) and (21) we applied an algebraic computer
program to evaluate th@r,|2 for small dimensionsV and then proceeded analytically
ton = 1,2 and arbitraryN. We thank N Lehmann for the computer work and also
for his intuition in proposing (23) with us. Having eventually proposed (19) as well we
speculatively extrapolated to the general form (24) for arbitrary posgtive

To prepare for the proof of (24) we observe the equivalence to the recursion relation

(n+1) <1+ g(N —n— 1)> |an41]? = (N —n) <1+n§) |a, |2 (A1)

with |ao|2 1. Multiplying (A1) by x", using(xd/dx)x" = nx", and summing fronz = 0
ton = N — 1 we obtain the differential equation (25), the polynomial solution of which
with Pﬁ(x) = 1 generates the mean squared secular coefficients. A few elementary steps
will now yield the validity of the differential equation.

We start from the definition (4) of the generating function, setting x, © = 1 and
take the derivative with respect g

IP(x) [N 1
dx __<Zlei‘/)i—x> (A2)

i=

where the angular brackets denote an average with the whole integrand of (A2) as the
weight. On the other hand, taking the derivative with respegt teefore settingt = 1 and
exploiting the invariance of th&/-fold phase integral under a constant shift of all phases
we get

N

IP(x) 1
S D= *3)

Next, we differentiate (A2) once more,

9°P(x) 1
ax2 <; (€9 — x)(€¥ — x)>

. -2
B <Z (69 — x) (&9 — eiwj)>

i#]
—ipi
= _<Zeij (1—|cot(p 2¢’)>. (A4)
iz =0
Realizing that the cotangent function may be replaced by a derivative acting on the joint
density of eigenvalues (2),

(E)(p,_ZCt

J ()
we can transform the last member in (A4) by partial integration. A little algebraic
hocuspocus then gives, with the help of (A2) and (A3),

92P(x)

2(2 ooy
Tax? (N 1+ﬂ(1—x)>( +2 e w)

2 gy 87P

‘)d;; ~0 (A5)

i
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Finally, the averag{jge*‘“’f) can be expressed in terms of the generating functicand
its derivatived P/dx by employing the identity) ", (e™'%) = 3", (id € '% /d¢y), integrating
by parts, and again invoking (A2), (A3) and (A5),

—ipi B _ — (x — E_
Z<e¢><2+2(zv 1))—(x H, -~ NP. (A7)

Upon inserting this in (A6) we obtain a differential equation for the generating funétion
which is easily put into the form (25).
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